Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery


Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors' method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

Medical Physics
Dionne M. Aleman, PhD, PEng
Dionne M. Aleman, PhD, PEng
Associate Professor of Industrial Engineering